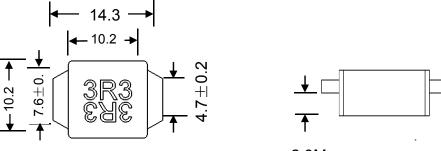
1.3Max

Type:SHCJ1030V

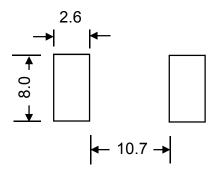
Product Description

- 10.2×14.3mm Max.(L×W)3.6mm Max. Height.
- Inductance Range: 0.15~4.70 µH
- · In addition to the standards versions shown here,
- custom inductors are also available to meet your exact requirements.


Feature

- · Lowest height in this package footprint
- Shielded construction
- Lowest DCR/µH, in this package size.
- · Handles high transient current spikes without saturation.
- Ultra low buzz noise, due to composite construction.
- The products contain no lead and also support lead-free soldering.

Applications


- End products in voltage regulator module (VRM)
- · PDA/Notebook/Desktop/Server applications
- High current POL converters
- · Low profile, high current power supplies
- Battery powered devices
- · DC/DC converters in distributed power systems
- DC/DC converter for Field Programmable Gate Array(FPGA

Dimensions (mm) General Tolerance:±0.3

Land Pattern(mm)

Please refer to the sales offices on our website for a representative near you www.suntekelec.com

Type:SHCJ1030V

Specification

Suntek Part Number	System code	Inductance L0 (µH)±20% @ 0 A	l rms (A)Max.	l sat (A)Max.	DCR(mΩ) typ.@25℃	DCR(mΩ) Max.@26℃
SHCJ1030V-R15M		0.15	36.5	60.0	0.80	0.98
SHCJ1030V-R22M		0.22	31.5	57.5	1.10	1.32
SHCJ1030V-R33M		0.33	28.0	50.5	1.55	1.68
SHCJ1030V-R47M		0.47	23.4	42.0	2.22	2.40
SHCJ1030V-R56M		0.56	21.5	39.0	2.15	2.82
SHCJ1030V-R68M		0.68	20.0	36.0	2.60	3.32
SHCJ1030V-R82M		0.82	19.5	35.5	3.10	3.44
SHCJ1030V-1R0M		1.00	18.5	34.0	3.20	3.74
SHCJ1030V-1R5M		1.50	15.0	27.0	4.55	5.84
SHCJ1030V-2R2M		2.20	12.0	21.5	7.85	9.09
SHCJ1030V-3R3M		3.30	9.0	16.5	11.5	15.5
SHCJ1030V-4R7M		4.70	7.5	13.5	16.5	23.5

%Description of Part Name

SHCJ1030V-R47M

Inductance(L)

Inductor size(Length x Height)

Note:

1. Test frequency : 100KHz / 1.0V

2. All test data referenced to 20 $^\circ\!\!\!\mathrm{C}$ ambient.

3. Testing Instrument : L: HP4284A,CH11025,CH3302,CH1320 ,CH1320S LCR METER / Rdc:CH16502,Agilent33420A MICRO OHMMETER.

4. Heat Rated Current (Irms) will cause the coil temperature rise approximately $\triangle T=40^{\circ}C$ without core loss..

5. Saturation Current (Isat) will cause L0 to drop approximately20% typical.

6. The part temperature (ambient + temp rise) should not exceed 125 ℃under worst case operating conditions.Circuit design,component,PCB trace size and

thickness,airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application